0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessExtensively grazed grasslands are understudied in terms of their contribution to greenhouse gas (GHG) emissions from livestock production. Mountains, moorlands and heath occupy 18% of the UK land area, however, in situ studies providing high frequency N2O emissions from sheep urine deposited to such areas are lacking. Organic soils typical of these regions may provide substrates for denitrification-related N2O emissions, however, acidic and anoxic conditions may inhibit nitrification (and associated emissions from nitrification and denitrification). We hypothesised urine N2O-N emission factors (EFs) would be lower than the UK country-specific and IPCC default value for urine, which is based on lowland measurements. Using automated GHG sampling chambers, N2O emissions were determined from real sheep urine (930 kg N ha−1) and artificial urine (920 kg N ha−1) applied in summer, and from an artificial urine treatment (1120 kg N ha−1) and a combined NO3− and glucose treatment (106 kg N ha−1; 213 kg C ha−1) in autumn. The latter treatment provided an assessment of the soils capacity for denitrification under non-substrate limiting conditions. The artificial urine-N2O EF was 0.01 ± 0.00% of the N applied in summer and 0.00 ± 0.00% of the N applied in autumn. The N2O EF for real sheep urine applied in summer was 0.01 ± 0.02%. A higher flux was observed in only one replicate of the real urine treatment, relating to one chamber where an increase in soil solution NO3− was observed. No lag phase in N2O emission was evident following application of the NO3− and glucose treatment, which emitted 0.69 ± 0.15% of the N applied. This indicates nitrification rates are the bottle-neck for N2O emissions in upland organic soils. We calculated the potential impact of using hill-grazing specific urine N2O EFs on the UK inventory of N2O emissions from sheep excreta, and found a reduction of ca. 43% in comparison to the use of a country-specific excretal EF.
Karina A. Marsden, J. Anders Holmberg, Davey L Jones, Alice F. Charteris, L. M. Cardenas, David R. Chadwick (2019). Nitrification represents the bottle-neck of sheep urine patch N2O emissions from extensively grazed organic soils. The Science of The Total Environment, 695, pp. 133786-133786, DOI: 10.1016/j.scitotenv.2019.133786.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
The Science of The Total Environment
DOI
10.1016/j.scitotenv.2019.133786
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access