0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe latitudinal variation (35° to 28°N) in the rate of diffusive nitrate supply across the thermocline and the associated variation in the uptake rate of nitrate and ammonium in the Central Atlantic was studied. The calculated diffusive nitrate flux showed a sharp latitudinal gradient, with the lowest nitrate supply (0.00037 μ mol m −3 d −1 ) in the South Atlantic subtropical gyre and the highest values (23.5 μ mol m −3 d −1 ) between the Equator and 15°N. The uptake rate of nitrate was inhibited at high irradiance at most stations. Both nitrate and ammonium uptake rates were lowest (about 3 and 10 umol m −3 d −1 , respectively) at the southern end of the transect and increased (about 20 and 55 μ mol m −3 d −1 , respectively) towards the Equator, with this increase being much greater for ammonium than for nitrate uptake. The f ‐ratio was highest (≈0.4) just south of the Equator and lowest (≈0.03) at the southern end of the transect. The slope between total uptake rate of dissolved inorganic nitrogen and gross primary production, calculated from O 2 ‐based measurements, in surface waters (4.72 ± 1.54) was somewhat lower, but not significantly so, than the expected C/N ratio of 6.6. The average uptake rate of nitrate did not differ significantly from the average estimated diffusive supply of nitrate to the biogenic layer over the Central Atlantic. However, the nitrate uptake rate increased as the ⅓ power of the diffusive nitrate flux to the biogenic layer. As a result, nitrate uptake far exceeded (by up to 100‐fold) the nitrate flux to the biogenic layer in the stations where the supply of nitrate was lowest. The excess nitrate uptake averaged 0.65 ± 0.24 mmol NO 3 m −2 d −1 (range, 0.05–1.9 mmol NO 3 m −2 d −1 ), which must be supplied through atmospheric deposition and other perturbation events. This excess nitrate uptake is relatively large compared to the diffusive supply in the most unproductive areas, where external nitrate inputs fuel the new production. In contrast, these sources of nitrate are far less significant where high diffusive fluxes suffice to maintain high nitrate uptake rates.
Dolors Planas, Susana Agustı́, Carlos M. Duarte, Timothy C. Granata, Martín Merino‐Ibarra (1999). Nitrate uptake and diffusive nitrate supply in the Central Atlantic. , 44(1), DOI: https://doi.org/10.4319/lo.1999.44.1.0116.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
1999
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.4319/lo.1999.44.1.0116
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access