0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis work investigated the chemical and electrochemical mechanisms of localised corrosion triggered by CaS·xMgO·yAl2O3·TiN complex inclusions in high strength low alloy steel (HSLAS) under a simulated marine environment. Special focus was given to the role of the TiN portion of the inclusion on the initiation and growth of the corrosion pits. The thermodynamic process of pitting initiation was investigated by Gibbs free energy, Pourbaix diagram and first principle calculation. Localised corrosion is mainly induced by inclusions and triggered by dissolution of adjacent distorted matrix. Chemical dissolution of CaS portion in CaS·xMgO·yAl2O3·TiN complex inclusion creates an acidic aggressive environment that accelerates the further dissolution of inclusion and matrix. Galvanic coupling effect between TiN inclusion and matrix is directly verified. TiN covered with a TiO2 film acts as the cathodic phase in galvanic corrosion, although it has a lower Volta potential than the matrix. This is an unusual correlation with the scanning Kelvin probe force microscopy result, which has been explained for this special system.
Chao Liu, Reynier I. Revilla, Xuan Li, Zaihao Jiang, Shufeng Yang, Zhongyu Cui, Dawei Zhang, Herman Terryn, Xiaogang Li (2022). New insights into the mechanism of localised corrosion induced by TiN-containing inclusions in high strength low alloy steel. Journal of Material Science and Technology, 124, pp. 141-149, DOI: 10.1016/j.jmst.2021.12.075.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
9
Datasets
0
Total Files
0
Language
English
Journal
Journal of Material Science and Technology
DOI
10.1016/j.jmst.2021.12.075
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access