RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Neurophysiological consequences of synapse loss in progressive supranuclear palsy

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
en
2022

Neurophysiological consequences of synapse loss in progressive supranuclear palsy

0 Datasets

0 Files

en
2022
DOI: 10.1101/2022.06.22.22276697

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Karl Friston
Karl Friston

University College London

Verified
Natalie Adams
Amirhossein Jafarian
Alistair Perry
+12 more

Abstract

Abstract Synaptic loss occurs early in many neurodegenerative diseases and contributes to cognitive impairment even in the absence of gross atrophy. Currently, for human disease there are few formal models to explain how cortical networks underlying cognition are affected by synaptic loss. We advocate that biophysical models of neurophysiology offer both a bridge from clinical to preclinical models of pathology, and quantitative assays for experimental medicine. Such biophysical models can also disclose hidden neuronal dynamics generating neurophysiological observations like electro- and magneto-encephalography (MEG). Here, we augment a biophysically informed mesoscale model of human cortical function by inclusion of synaptic density estimates as captured by [ 11 C]UCB-J positron emission tomography, and provide insights into how regional synapse loss affects neurophysiology. We use the primary tauopathy of progressive supranuclear palsy (Richardson’s syndrome) as an exemplar condition, with high clinicopathological correlations. Progressive supranuclear palsy causes a marked change in cortical neurophysiology in the presence of mild atrophy and is associated with a decline in cognitive functions associated with the frontal lobe. Using (parametric empirical) Bayesian inversion of a conductance-based canonical microcircuit model of MEG data, we show that the inclusion of regional synaptic density—as a subject-specific prior on laminar specific neuronal populations—markedly increases model evidence. Specifically, model comparison suggests that a reduction in synaptic density in inferior frontal cortex affects superficial and granular layer glutamatergic excitation. This predicted individual differences in behaviour, demonstrating the link between synaptic loss, neurophysiology, and cognitive deficits. The method we demonstrate is not restricted to progressive supranuclear palsy or the effects of synaptic loss: such pathology-enriched dynamic causal models can be used to assess the mechanisms of other neurological disorders, with diverse non-invasive measures of pathology, and is suitable to test the effects of experimental pharmacology.

How to cite this publication

Natalie Adams, Amirhossein Jafarian, Alistair Perry, Matthew A Rouse, Alexander D. Shaw, Alexander G. Murley, Thomas Cope, W Richard Bevan‐Jones, Luca Passamonti, Duncan Street, Negin Holland, David J. Nesbitt, Laura E. Hughes, Karl Friston, James B. Rowe (2022). Neurophysiological consequences of synapse loss in progressive supranuclear palsy. , DOI: https://doi.org/10.1101/2022.06.22.22276697.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2022

Authors

15

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1101/2022.06.22.22276697

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access