RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Neuromorphic Devices Assisted by Machine Learning Algorithms

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2025

Neuromorphic Devices Assisted by Machine Learning Algorithms

0 Datasets

0 Files

en
2025
DOI: 10.1088/2631-7990/adba1e

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Ziwei Huo
Qijun Sun
Jinran Yu
+4 more

Abstract

Abstract Neuromorphic computing extends beyond sequential processing modalities and outperforms traditional von Neumann architectures in implementing more complicated tasks, e.g., pattern processing, image recognition, and decision making. It features parallel interconnected neural networks, high fault tolerance, robustness, autonomous learning capability, and ultralow energy dissipation. The algorithms of artificial neural network (ANN) have also been widely used because of their facile self-organization and self-learning capabilities, which mimic those of the human brain. To some extent, ANN reflects several basic functions of the human brain and can be efficiently integrated into neuromorphic devices to perform neuromorphic computations. This review highlights recent advances in neuromorphic devices assisted by machine learning algorithms. First, the basic structure of simple neuron models inspired by biological neurons and the information processing in simple neural networks are particularly discussed. Second, the fabrication and research progress of neuromorphic devices are presented regarding to materials and structures. Furthermore, the fabrication of neuromorphic devices, including stand-alone neuromorphic devices, neuromorphic device arrays, and integrated neuromorphic systems, is discussed and demonstrated with reference to some respective studies. The applications of neuromorphic devices assisted by machine learning algorithms in different fields are categorized and investigated. Finally, perspectives, suggestions, and potential solutions to the current challenges of neuromorphic devices are provided.

How to cite this publication

Ziwei Huo, Qijun Sun, Jinran Yu, Yingjian Wei, Yifei Wang, Jeong Ho Cho, Zhong Lin Wang (2025). Neuromorphic Devices Assisted by Machine Learning Algorithms. , DOI: https://doi.org/10.1088/2631-7990/adba1e.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2025

Authors

7

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1088/2631-7990/adba1e

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access