0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessNetwork robustness refers to the ability of a network to continue its functioning against malicious attacks, which is critical for various natural and industrial networks. Network robustness can be quantitatively measured by a sequence of values that record the remaining functionality after a sequential node-or edge-removal attacks. Robustness evaluations are traditionally determined by attack simulations, which are computationally very time-consuming and sometimes practically infeasible. The convolutional neural network (CNN)-based prediction provides a cost-efficient approach to fast evaluating the network robustness. In this article, the prediction performances of the learning feature representation-based CNN (LFR-CNN) and PATCHY-SAN methods are compared through extensively empirical experiments. Specifically, three distributions of network size in the training data are investigated, including the uniform, Gaussian, and extra distributions. The relationship between the CNN input size and the dimension of the evaluated network is studied. Extensive experimental results reveal that compared to the training data of uniform distribution, the Gaussian and extra distributions can significantly improve both the prediction performance and the generalizability, for both LFR-CNN and PATCHY-SAN, and for various functionality robustness. The extension ability of LFR-CNN is significantly better than PATCHY-SAN, verified by extensive comparisons on predicting the robustness of unseen networks. In general, LFR-CNN outperforms PATCHY-SAN, and thus LFR-CNN is recommended over PATCHY-SAN. However, since both LFR-CNN and PATCHY-SAN have advantages for different scenarios, the optimal settings of the input size of CNN are recommended under different configurations.
Yang Lou, Chengpei Wu, Junli Li, Lin Wang, Guanrong Chen (2023). Network Robustness Prediction: Influence of Training Data Distributions. IEEE Transactions on Neural Networks and Learning Systems, 35(10), pp. 13496-13507, DOI: 10.1109/tnnls.2023.3269753.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Neural Networks and Learning Systems
DOI
10.1109/tnnls.2023.3269753
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access