0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free Access3D spot beamfocusing (SBF), in contrast to conventional angular-domain beamforming, concentrates radiating power within very small volume in both radial and angular domains in the near-field zone. Recently the implementation of channel-state-information (CSI)-independent machine learning (ML)-based approaches have been developed for effective SBF using extremely-largescale-programable-metasurface (ELPMs). These methods involve dividing the ELPMs into subarrays and independently training them with Deep Reinforcement Learning to jointly focus the beam at the Desired Focal Point (DFP). This paper explores near-field SBF using ELPMs, addressing challenges associated with lengthy training times resulting from independent training of subarrays. To achieve a faster CSIindependent solution, inspired by the correlation between the beamfocusing matrices of the subarrays, we leverage transfer learning techniques. First, we introduce a novel similarity criterion based on the Phase Distribution Image of subarray apertures. Then we devise a subarray policy propagation scheme that transfers the knowledge from trained to untrained subarrays. We further enhance learning by introducing Quasi-Liquid-Layers as a revised version of the adaptive policy reuse technique. We show through simulations that the proposed scheme improves the training speed about 5 times. Furthermore, for dynamic DFP management, we devised a DFP policy blending process, which augments the convergence rate up to 8-fold.
Mohammad Amir Fallah, Mehdi Monemi, Mehdi Rasti, Matti Latva-aho (2024). Near-Field Spot Beamfocusing: A Correlation-Aware Transfer Learning Approach. arXiv (Cornell University), DOI: 10.48550/arxiv.2405.19347.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2024
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
arXiv (Cornell University)
DOI
10.48550/arxiv.2405.19347
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access