RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Near-Field Modelling and Performance Analysis for Extremely Large-Scale IRS Communications

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
English
2023

Near-Field Modelling and Performance Analysis for Extremely Large-Scale IRS Communications

0 Datasets

0 Files

English
2023
arXiv (Cornell University)
DOI: 10.48550/arxiv.2303.00459

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Rui Zhang
Rui Zhang

The Chinese University of Hong Kong

Verified
Chao Feng
Haiquan Lu
Yong Zeng
+3 more

Abstract

Intelligent reflecting surface (IRS) is an emerging technology for wireless communications, thanks to its powerful capability to engineer the radio environment. However, in practice, this benefit is attainable only when the passive IRS is of sufficiently large size, for which the conventional uniform plane wave (UPW)-based far-field model may become invalid. In this paper, we pursue a near-field modelling and performance analysis for wireless communications with extremely large-scale IRS (XL-IRS). By taking into account the directional gain pattern of IRS's reflecting elements and the variations in signal amplitude across them, we derive both the lower- and upper-bounds of the resulting signal-to-noise ratio (SNR) for the generic uniform planar array (UPA)-based XL-IRS. Our results reveal that, instead of scaling quadratically and unboundedly with the number of reflecting elements M as in the conventional UPW-based model, the SNR under the new non-uniform spherical wave (NUSW)-based model increases with $M$ with a diminishing return and eventually converges to a certain limit. To gain more insights, we further study the special case of uniform linear array (ULA)-based XL-IRS, for which a closed-form SNR expression in terms of the IRS size and locations of the base station (BS) and the user is derived. Our result shows that the SNR is mainly determined by the two geometric angles formed by the BS/user locations with the IRS, as well as the dimension of the IRS. Numerical results validate our analysis and demonstrate the necessity of proper near-field modelling for wireless communications aided by XL-IRS.

How to cite this publication

Chao Feng, Haiquan Lu, Yong Zeng, Teng Li, Shi Jin, Rui Zhang (2023). Near-Field Modelling and Performance Analysis for Extremely Large-Scale IRS Communications. arXiv (Cornell University), DOI: 10.48550/arxiv.2303.00459.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2023

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

arXiv (Cornell University)

DOI

10.48550/arxiv.2303.00459

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access