0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMaterials can be made strong, but as such they are often brittle and prone to fracture when under stress. Inspired by the exceptionally strong and ductile structure of byssal threads found in certain mussels, we have designed and manufactured a multi-hierarchical steel, based on an inexpensive austenitic stainless steel, which defeats this "conflict" by possessing both superior strength and ductility. These excellent mechanical properties are realized by structurally introducing sandwich structures at both the macro- and nano-scales, the latter via an isometric, alternating, dual-phase crystal phases comprising nano-band austenite and nano-lamellar martensite, without change in chemical composition. Our experiments (transmission and scanning electron microscopy, electron back-scattered diffraction, nano-indentation and tensile tests) and micromechanics simulation results reveal a synergy of mechanisms underlying such exceptional properties. This synergy is key to the development of vastly superior mechanical properties, and may provide a unique strategy for the future development of new super strong and tough (damage-tolerant), lightweight and inexpensive structural materials.
Shan Cecilia Cao, Jiabin Liu, Linli Zhu, Ling Li, Ming Dao, Jian Lü, Robert O. Ritchie (2018). Nature-Inspired Hierarchical Steels. Scientific Reports, 8(1), DOI: 10.1038/s41598-018-23358-7.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Scientific Reports
DOI
10.1038/s41598-018-23358-7
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access