0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA central challenge in the field of electrophysiology is to achieve intracellular recording of the complex networks of electrogenic cells in tissues. The historical gold-standard of intracellular recording - patch-clamp electrodes - do have limitations in terms of their invasiveness and difficulty to use in large-scale parallel recording. Recent advances in nanowire-based bioelectronics have demonstrated minimally-invasive intracellular interfaces and highly-scalable parallel recording at the network level. Combined with in vivo recording platforms, these advances can enable investigations of dynamics in the brain and drive the development of new brain-machine interfaces with unprecedented resolution and precision.
Anqi Zhang, Yunlong Zhao, Siheng Sean You, Charles M. Lieber (2019). Nanowire probes could drive high-resolution brain-machine interfaces. Nano Today, 31, pp. 100821-100821, DOI: 10.1016/j.nantod.2019.100821.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Nano Today
DOI
10.1016/j.nantod.2019.100821
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access