0 Datasets
0 Files
$0 Value
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessElectronic and optoelectronic devices impact many areas of society, from simple household appliances and multimedia systems to communications, computing, and medical instruments. Given the demand for ever more compact and powerful systems, there is growing interest in the development of nanoscale devices that could enable new functions and/or greatly enhanced performance. Semiconductor nanowires are emerging as a powerful class of materials that, through controlled growth and organization, are opening up substantial opportunities for novel nanoscale photonic and electronic devices. We review the broad array of nanowire building blocks available to researchers and discuss a range of electronic and optoelectronic nanodevices, as well as integrated device arrays, that could enable diverse and exciting applications in the future.
Yat Li, Fang Qian, Jie Xiang, Charles M. Lieber (2006). Nanowire electronic and optoelectronic devices. Materials Today, 9(10), pp. 18-27, DOI: 10.1016/s1369-7021(06)71650-9.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2006
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Materials Today
DOI
10.1016/s1369-7021(06)71650-9
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access