0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMacroautophagy/autophagy is markedly inhibited in the hearts of elderly obese patients with heart failure and preserved ejection fraction (HFpEF). However, the therapeutic relevance and underlying signaling mechanisms of the decline of autophagy in HFpEF remain unclear. We observed that therapeutic nicotinamide adenine dinucleotide (NAD+) repletion via nicotinamide supplementation restores cardioprotective autophagy and mitophagy in preclinical models of obesity-related HFpEF. Targeted and untargeted cardiac acetylome profiling revealed no significant deacetylation of essential autophagy-related proteins, including ATG5, ATG7 and mammalian Atg8-family members (ATG8s), suggesting a SIRT (sirtuin)-independent mechanism of autophagy induction by nicotinamide. Instead, cardiac transcriptomic analysis revealed major shifts in insulin-IGF1 (insulin-like growth factor 1) signaling, a known autophagy inhibitory pathway. Nicotinamide supplementation reversed the HFpEF-associated increase in insulin-IGF1 signaling, whereas exogenous IGF1 counteracts nicotinamide-induced autophagy. Importantly, nicotinamide fails to exert cardioprotective effects in mice lacking the autophagy-related protein ATG5 in cardiomyocytes, implicating autophagy as essential for the therapeutic response. In patients with HFpEF, a metabolic shift diverting nicotinamide away from NAD+ biosynthesis toward catabolism strongly correlates with worsening heart failure and increased cardiovascular mortality, even after adjusting for traditional risk factors. In sum, we demonstrate that NAD+ replenishment improves cardiometabolic HFpEF by restoring cardiac autophagy through suppression of excessive IGF1 signaling.
Mahmoud Abdellatif, Francisco Vasques-Nóvoa, João Pedro Ferreira, Junichi Sadoshima, Abhinav Diwan, Wolfgang A. Linke, Guido Guido Kroemer, Simon Sedej (2025). NAD <sup>+</sup> repletion restores cardioprotective autophagy and mitophagy in obesity-associated heart failure by suppressing excessive trophic signaling. , DOI: https://doi.org/10.1080/15548627.2025.2522127.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1080/15548627.2025.2522127
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access