0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessFatigue failure is invariably the most crucial failure mode for metallic structural components. Most microstructural strategies for enhancing fatigue resistance are effective in suppressing either crack initiation or propagation, but often do not work for both synergistically. Here, we demonstrate that this challenge can be overcome by architecting a gradient structure featuring a surface layer of nacre-like nanolaminates followed by multi-variant twinned structure in pure titanium. The polarized accommodation of highly regulated grain boundaries in the nanolaminated layer to cyclic loading enhances the structural stability against lamellar thickening and microstructure softening, thereby delaying surface roughening and thus crack nucleation. The decohesion of the nanolaminated grains along horizonal high-angle grain boundaries gives rise to an extraordinarily high frequency (≈1.7 × 103 times per mm) of fatigue crack deflection, effectively reducing fatigue crack propagation rate (by 2 orders of magnitude lower than the homogeneous coarse-grained counterpart). These intriguing features of the surface nanolaminates, along with the various toughening mechanisms activated in the subsurface twinned structure, result in a fatigue resistance that significantly exceeds those of the homogeneous and gradient structures with equiaxed grains. Our work on architecting the surface nanolaminates in gradient structure provides a scalable and sustainable strategy for designing more fatigue-resistant alloys. Most strategies to improve fatigue resistance address either crack initiation or growth. Here, the authors design a gradient-structured Ti with nacre-like surface nanolaminates that increase fatigue performance by suppressing both stages of cracking
Yong Zhang, Chenyun He, Qin Yu, Xiao Li, Xiaogang Wang, Yin Zhang, Ji Wang, Chao Jiang, Yun-Fei Jia, Xian‐Cheng Zhang, Binhan Sun, Robert O. Ritchie, S.T. Tu (2024). Nacre-like surface nanolaminates enhance fatigue resistance of pure titanium. Nature Communications, 15(1), DOI: 10.1038/s41467-024-51423-5.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
13
Datasets
0
Total Files
0
Language
English
Journal
Nature Communications
DOI
10.1038/s41467-024-51423-5
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access