RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Multiview Summarization and Activity Recognition Meet Edge Computing in IoT Environments

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2020

Multiview Summarization and Activity Recognition Meet Edge Computing in IoT Environments

0 Datasets

0 Files

English
2020
IEEE Internet of Things Journal
Vol 8 (12)
DOI: 10.1109/jiot.2020.3027483

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Amir Gandomi
Amir Gandomi

University of Techology Sdyney

Verified
Tanveer Hussain
Khan Muhammad
Amin Ullah
+5 more

Abstract

Multiview video summarization (MVS) has not received much attention from the research community due to inter-view correlations and views' overlapping, etc. The majority of previous MVS works are offline, relying on only summary, and require additional communication bandwidth and transmission time, with no focus on foggy environments. We propose an edge intelligence-based MVS and activity recognition framework that combines artificial intelligence with Internet of Things (IoT) devices. In our framework, resource-constrained devices with cameras use a lightweight CNN-based object detection model to segment multiview videos into shots, followed by mutual information computation that helps in a summary generation. Our system does not rely solely on a summary, but encodes and transmits it to a master device using a neural computing stick for inter-view correlations computation and efficient activity recognition, an approach which saves computation resources, communication bandwidth, and transmission time. Experiments show an increase of 0.4 unit in F-measure on an MVS Office dateset and 0.2% and 2% improved accuracy for UCF-50 and YouTube 11 datesets, respectively, with lower storage and transmission times. The processing time is reduced from 1.23 to 0.45 s for a single frame and optimally 0.75 seconds faster MVS. A new dateset is constructed by synthetically adding fog to an MVS dateset to show the adaptability of our system for both certain and uncertain IoT surveillance environments.

How to cite this publication

Tanveer Hussain, Khan Muhammad, Amin Ullah, Javier Del Ser, Amir Gandomi, Muhammad Sajjad, Sung Wook Baik, Victor Hugo C. de Albuquerque (2020). Multiview Summarization and Activity Recognition Meet Edge Computing in IoT Environments. IEEE Internet of Things Journal, 8(12), pp. 9634-9644, DOI: 10.1109/jiot.2020.3027483.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

8

Datasets

0

Total Files

0

Language

English

Journal

IEEE Internet of Things Journal

DOI

10.1109/jiot.2020.3027483

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access