0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Developing ultrahigh‐strength fabric‐based triboelectric nanogenerators for harvesting high‐impact energy and sensing biomechanical signals is still a great challenge. Here, the constraints are addressed by design of a multistrand twisted triboelectric Kevlar (MTTK) yarn using conductive and non‐conductive Kevlar fibers. Manufactured using a multistrand twisting process, the MTTK yarn offers superior tensile strength (372 MPa), compared to current triboelectric yarns. In addition, a self‐powered impact sensing fabric patch (SP‐ISFP) comprising signal acquisition, processing, communication circuit, and MTTK yarns is integrated. The SP‐ISFP features withstanding impact (4 GPa) and a sensitivity and response time under the high impact condition (59.68 V GPa −1 ; 0.4 s). Furthermore, a multi‐channel smart bulletproof vest is developed by the array of 36 SP‐ISFPs, enabling the reconstruction of impact mapping and assessment of body injury location and levels by real‐time data acquisition. Their potential to reduce body injuries, professional security, and construct a multi‐point personal vital signs dynamic monitoring platform holds great promise.
Fangjing Xing, Xiaobo Gao, Jing Wen, Hao Li, Hui Liu, Zhong Lin Wang, Baodong Chen (2024). Multistrand Twisted Triboelectric Kevlar Yarns for Harvesting High Impact Energy, Body Injury Location and Levels Evaluation. , 11(21), DOI: https://doi.org/10.1002/advs.202401076.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/advs.202401076
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access