0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWell-tailored three-dimensional (3D) ZnO nanowire architectures have been successfully grown on Si microtrenches fabricated using nanoimprinting lithography by a low-temperature hydrothermal approach. Au nanoparticles or ZnO nanofilms were used as templates to tailor the orientation ordered nanowire growth normal to the microtrench surface. Au produced sparse nanowire growth, while ZnO seeds created densely packed growth. Optically, other than displaying a primary color when viewed from one incident angle, the 3D nanowire architecture periodically displayed multiple primary color domains covering all microtrenches and the local orientation ordered nanowire arrays. A pre-growth annealing of ZnO nanoseeds resulted in nonuniformity and non-periodic distribution of the grown nanoarchitectures and thus reduced the multicolor effect.
Pu‐Xian Gao, J. L. Lee, Zhong Lin Wang (2007). Multicolored ZnO Nanowire Architectures on Trenched Silicon Substrates. , 111(37), DOI: https://doi.org/10.1021/jp074465o.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2007
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/jp074465o
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access