RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Multi-receptor skin with highly sensitive tele-perception somatosensory

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2024

Multi-receptor skin with highly sensitive tele-perception somatosensory

0 Datasets

0 Files

en
2024
Vol 10 (37)
Vol. 10
DOI: 10.1126/sciadv.adp8681

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Yan Du
Penghui Shen
Houfang Liu
+8 more

Abstract

The limitations and complexity of traditional noncontact sensors in terms of sensitivity and threshold settings pose great challenges to extend the traditional five human senses. Here, we propose tele-perception to enhance human perception and cognition beyond these conventional noncontact sensors. Our bionic multi-receptor skin employs structured doping of inorganic nanoparticles to enhance the local electric field, coupled with advanced deep learning algorithms, achieving a Δ V /Δ d sensitivity of 14.2, surpassing benchmarks. This enables precise remote control of surveillance systems and robotic manipulators. Our long short-term memory–based adaptive pulse identification achieves 99.56% accuracy in material identification with accelerated processing speeds. In addition, we demonstrate the feasibility of using a two-dimensional (2D) sensor matrix to integrate real object scan data into a convolutional neural network to accurately discriminate the shape and material of 3D objects. This promises transformative advances in human-computer interaction and neuromorphic computing.

How to cite this publication

Yan Du, Penghui Shen, Houfang Liu, Yuyang Zhang, Luyao Jia, Xiong Pu, Feiyao Yang, Tian‐Ling Ren, Daping Chu, Zhong Lin Wang, Di Wei (2024). Multi-receptor skin with highly sensitive tele-perception somatosensory. , 10(37), DOI: https://doi.org/10.1126/sciadv.adp8681.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

11

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1126/sciadv.adp8681

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access