0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPost-transcriptional regulation is a crucial step for coordinating immune responses. Post-transcriptional mechanisms exquisitely control inflammation by increasing or decreasing both the stability of mRNAs and the efficiency of protein translation. Regulatory RNase 1 (Regnase-1, also known as Zc3h12a or MCPIP1) was identified as a novel protein harboring a CCCH-type zinc-finger domain and a PIN-like RNase domain. Regnase-1 mRNA expression is induced by Toll-like receptor (TLR) ligands, interleukin (IL)-1β and MCP-1. Regnase-1 destabilizes mRNAs encoding immune related proteins including IL-6 and IL-12p40 via their 3′ untranslated regions. In Regnase-1-deficient (−/−) macrophages, IL-6 is overproduced in response to LPS because Il6 mRNA is stabilized because of Regnase-1 deficiency. Regnase-1 −/− mice developed severe systemic inflammation, characterized by production of autoantibodies. It is now known that Regnase-1 protein expression is dynamically regulated during the course of inflammation. Upon IL-1β and TLR stimulation, Regnase-1 is rapidly phosphorylated by IκB kinases (IKKs) and degraded via ubiquitin–proteasome machinery. Regnase-1 degradation allows Il6 mRNA to be expressed rapidly and robustly upon stimulation. Furthermore, Regnase-1 destabilizes its own mRNA, thereby preventing excessive translation of Regnase-1 and degradation of cytokine-encoding mRNAs. In this review, we will discuss the mechanism of Regnase-1-mediated mRNA decay and describe the mechanism by which Regnase-1 is tightly regulated in innate immune cells. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Takuya Uehata, Akira Shizuo (2013). mRNA degradation by the endoribonuclease Regnase-1/ZC3H12a/MCPIP-1. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1829(6-7), pp. 708-713, DOI: 10.1016/j.bbagrm.2013.03.001.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
2
Datasets
0
Total Files
0
Language
English
Journal
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
DOI
10.1016/j.bbagrm.2013.03.001
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access