0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn this work, the surface of a PVDF-based hollow fiber membrane was modified by coating MoS2-TiO2 to improve the performance of membrane distillation (MD). The MoS2-TiO2 was first synthesized at different ratios using a one-step hydrothermal process. Then, the PVDF-based hollow fiber membrane was spun at various air gaps and PES was also added as an additive. As 5M5T (50 wt% MoS2 and 50 wt% TiO2) possessed better physicochemical properties and narrow band gap, the 5M5T was mixed with trichloro(octadecyl)silane in (OTS) at various loading to form a dip-coating solution. The PP20 membrane (PVDF + PES) spun at a 20 cm air gap was used as a support for MD due to its high porosity and low membrane thickness. It was observed that the contact angle of the MoS2-TiO2/PP20 membrane increased significantly to 136.8 ± 2.33° when the membrane was coated with 0.2% of 5M5T MoS2-TiO2. The MD performances were investigated via an in-house MD system. The results revealed that the performances of MoS2-TiO2/PP20 membranes were much higher than previously reported membranes due to their enhanced hydrophobicity and porosity properties. It was observed that a higher operating temperature could elevate the permeate flux up to 23.3 kg·m−2·h−1, but less than 0.1% changes in the rejection rate. The results obtained in this work suggest that the MoS2-TiO2 coated on the PVDF-based membrane can overcomes the typical permeability/rejection rate trade-off effect, which can play a significant role in enhancing MD performances.
Nurul Syazana Fuzil, Nur Hidayati Othman, Nur Hashimah Alias, Fauziah Marpani, Muhammad Shafiq Mat Shayuti, Munawar Zaman Shahruddin, Mohd Rizuan Mohd Razlan, Norazah Abd Rahman, Woei Jye Lau, Mohd Hafiz Dzarfan Othman, Ahmad Fauzi Ismail, Tutuk Djoko Kusworo, Anwar Ul‐Hamid (2023). MoS2-TiO2 coated PVDF-based hollow fiber membranes for permeate flux enhancement in membrane distillation. Journal of environmental chemical engineering, 11(3), pp. 109866-109866, DOI: 10.1016/j.jece.2023.109866.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
13
Datasets
0
Total Files
0
Language
English
Journal
Journal of environmental chemical engineering
DOI
10.1016/j.jece.2023.109866
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access