0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessGold nanoparticles have received much attention due to their potential diagnostic and therapeutic applications. Gold nanoparticles are attractive in many biomedical applications because of their biocompatibility, easily modifiable surfaces for targeting, lack of heavy metal toxicity, wide range of sizes (35-100 nm), tunable plasmonic resonance peak, encapsulated site-specific drug delivery, and strong optical absorption in the near-infrared regime. Specifically, due to their strong optical absorption, gold nanoparticles have been used as a contrast agent for molecular photoacoustic (PA) imaging of tumor. The plasmonic resonance peak of the gold nanocages (AuNCs) was tuned to the near-infrared region, and the ratio of the absorption cross-section to the extinction cross-section was approximately ~70%, as measured by PA sensing. We used PEGylated gold nanocages (PEG-AuNCs) as a passive targeting contrast agent on melanomas. After 6-h intravenous injection of PEG-AuNCs, PA amplitude was increased by ~14 %. These results strongly suggest PA imaging paired with AuNCs is a promising diagnostic tool for early cancer detection.
Chulhong Kim, Eun Chul Cho, Jingyi Chen, Kwang Hyun Song, Leslie Au, Christopher Favazza, Qiang Zhang, Claire M. Cobley, Younan Xia, Lihong V. Wang (2010). Molecular photoacoustic imaging using gold nanoparticles as a contrast agent. , 7564, DOI: https://doi.org/10.1117/12.843549.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2010
Authors
10
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1117/12.843549
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access