0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper investigates the abilities of Artificial Neural Networks (ANN), Least Squares – Support Vector Regression (LS-SVR), Fuzzy Logic, and Adaptive Neuro-Fuzzy Inference System (ANFIS) techniques to improve the accuracy of daily pan evaporation estimation in sub-tropical climates. Meteorological data from the Karso watershed in India (consisting of 3801 daily records from the year 2000 to 2010) were used to develop and test the models for daily pan evaporation estimation. The measured meteorological variables include daily observations of rainfall, minimum and maximum air temperatures, minimum and maximum humidity, and sunshine hours. Prior to model development, the Gamma Test (GT) was used to derive estimates of the noise variance for each input–output set in order to identify the most useful predictors for use in the machine learning approaches used in this study. The ANN models consisted of feed forward backpropagation (FFBP) models with Bayesian Regularization (BR), along with the Levenberg–Marquardt (LM) algorithm. A comparison was made between the estimates provided by the ANN, LS-SVR, Fuzzy Logic, and ANFIS models. The empirical Hargreaves and Samani method (HGS), as well as the Stephens–Stewart (SS) method, were also considered for comparison with the newer machine learning methods. The Root Mean Square Error (RMSE) and Correlation Coefficient (CORR) were the statistical performance indices that were used to evaluate the accuracy of the various models. Based on the comparison, it was found that the Fuzzy Logic and LS-SVR approaches can be employed successfully in modeling the daily evaporation process from the available climatic data. In addition, results showed that the machine learning models outperform the traditional HGS and SS empirical methods.
Manish Kumar Goyal, Birendra Bharti, John Quilty, Jan Adamowski, Ashish Pandey (2014). Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert Systems with Applications, 41(11), pp. 5267-5276, DOI: 10.1016/j.eswa.2014.02.047.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2014
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Expert Systems with Applications
DOI
10.1016/j.eswa.2014.02.047
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access