0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessUntil now, a satisfying account of the cause and purpose of migraine has remained elusive. We explain migraine within the frameworks of allostasis (the situationally-flexible, forward-looking equivalent of homeostasis) and active inference (interacting with the environment via internally-generated predictions). Due to its multimodality, and long timescales between cause and effect, allostasis is inherently prone to catastrophic error, which might be impossible to correct once fully manifest, an early indicator which is elevated prediction error (discrepancy between prediction and sensory input) associated with internal sensations (interoception). Errors can usually be resolved in a targeted manner by action (correcting the physiological state) or perception (updating predictions in light of sensory input); persistent errors are amplified broadly and multimodally, to prioritise their resolution (the migraine premonitory phase); finally, if still unresolved, progressive amplification renders further changes to internal or external sensory inputs intolerably intense, enforcing physiological stability, and facilitating accurate allostatic prediction updating. As such, migraine is an effective 'failsafe' for allostasis, however it has potential to become excessively triggered, therefore maladaptive.
William Sedley, Sukhbinder Kumar, Siobhan Jones, Andrew R. Levy, Karl Friston, Timothy D. Griffiths, Paul Goldsmith (2024). Migraine as an allostatic reset triggered by unresolved interoceptive prediction errors. , 157, DOI: https://doi.org/10.1016/j.neubiorev.2024.105536.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1016/j.neubiorev.2024.105536
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access