0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessDespite plastics providing great benefits to our daily life, plastics accumulating in the environment, especially microplastics (MPs; defined as particles <5 mm), can lead to a range of problems and potential loss of ecosystem services. Current research has demonstrated the significant impact of MPs on aquatic systems, but little is known about their effects on the terrestrial environment, especially within agroecosystems. Hereby, we investigated the effect of MPs type and amount on plant growth, soil microorganisms, and photoassimilate carbon (C) allocation. MPs had a negative, dose-dependent impact on plant growth affecting both above- and below-ground productivity (−22.9% and −8.4%). MPs also influenced assimilated 14C allocation in soil (+70.6%) and CO2 emission (+43.9%). Although the activity of β-glucosidase was suppressed by MPs, other C- and N-cycling related enzyme activities were not affected. The type and amount of MPs in soil greatly altered C flow through the plant-soil system, highlighting that MPs negatively affect a range of C-dependent soil functions. Moreover, MPs increased the soil microbial biomass (+43.6%; indicated by PLFAs), and changed the structure and metabolic status of the microbial community. The evidence presented here suggests that MPs can have a significant impact on key pools and fluxes within the terrestrial C cycle with the response being both dose-dependent and MPs specific. We conclude that MPs in soil are not benign and therefore every step should be made to minimise their entry into the soil ecosystem and potential to transfer into the food chain.
Huadong Zang, Jie Zhou, Miles R. Marshall, David R. Chadwick, Yuan Wen, Davey L Jones (2020). Microplastics in the agroecosystem: Are they an emerging threat to the plant-soil system?. Soil Biology and Biochemistry, 148, pp. 107926-107926, DOI: 10.1016/j.soilbio.2020.107926.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Soil Biology and Biochemistry
DOI
10.1016/j.soilbio.2020.107926
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access