RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Microplastic contamination accelerates soil carbon loss through positive priming

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Microplastic contamination accelerates soil carbon loss through positive priming

0 Datasets

0 Files

English
2024
The Science of The Total Environment
DOI: 10.1016/j.scitotenv.2024.176273

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Davey L Jones
Davey L Jones

Bangor University

Verified
Jie Zhou
Wenhao Feng
Robert W. Brown
+8 more

Abstract

The priming effect, i.e., the changes in soil organic matter (SOM) decomposition following fresh organic carbon (C) inputs is known to influence C storage in terrestrial ecosystems. Microplastics (particle size <5 mm) are ubiquitous in soils due to the increasing use and often inadequate end-of-life management of plastics. Conventional polyethylene and bio-degradable (PHBV) plastics contain large amounts of C within their molecular structure, which can be assimilated by microorganisms. However, the extent and direction of the potential priming effect induced by microplastics is unclear. As such, we added 14C-labeled glucose to investigate how background polyethylene and PHBV microplastics (1 %, w/w) affect SOM decomposition and its potential microbial mechanisms in a short-term. The cumulative CO2 emission in soil contaminated with PHBV was 42–53 % higher than under Polyethylene contaminated soil after 60-day incubation. Addition of glucose increased SOM decomposition and induced a positive priming effect, as a consequence, caused a negative net soil C balance (−59 to −132 μg C g−1 soil) regardless of microplastic types. K-strategists dominated in the PHBV-contaminated soils and induced 72 % higher positive priming effects as compared to Polyethylene-contaminated soils (160 vs. 92 μg C g−1 soil). This was attributed to the enhanced decomposition of recalcitrant SOM to acquire nitrogen. The stronger priming effect associated in PHBVs can be attributed to cooperative decomposition among fungi and bacteria, which metabolize more recalcitrant C in PHBV. Moreover, comparatively higher calorespirometric ratios, lower substrate use efficiency, and larger enzyme activity but shorter turnover time of enzymes indicated that soil contaminated with PHBV release more energy, and have a more efficient microbial catabolism and are more efficient in SOM decomposition and nutrient resource uptake. Overall, microplastics, (especially bio-degradable microplastics) can alter biogeochemical cycles with significant negative consequences for C sequestration via increasing SOM decomposition in agricultural soils and for regional and global C budgets.

How to cite this publication

Jie Zhou, Wenhao Feng, Robert W. Brown, Haishui Yang, Guodong Shao, Lingling Shi, Heng Gui, Jianchu Xu, Fengmin Li, Davey L Jones, Kazem Zamanian (2024). Microplastic contamination accelerates soil carbon loss through positive priming. The Science of The Total Environment, pp. 176273-176273, DOI: 10.1016/j.scitotenv.2024.176273.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

11

Datasets

0

Total Files

0

Language

English

Journal

The Science of The Total Environment

DOI

10.1016/j.scitotenv.2024.176273

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access