0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSoil microbial life-history strategies, as indicated by rRNA operon (rrn) copy numbers, strongly influence agro-ecosystem functioning. Long-term N fertilization causes strong and lasting changes in soil properties, yet its impact on microbial strategies remains largely unexplored. Using long-term field experiments across three agro-ecosystems, we consistently found that N fertilization strongly decreased soil C: N ratio and pH, further increasing the community-level rrn copy number, including both average rrn copy number and total 16S rRNA copy number. Soil C: N stoichiometry balanced by N supplement favored the growth of N-dependent copiotrophic species containing high rrn copy numbers (an average of 2.5) and increased their network connections, predominantly contributing to community-level rrn copy number increase. Decreased soil pH caused by N fertilization also favored the growth of some species whose abundances negatively correlated with pH, partially contributing to the community-level rrn copy number increase. By examining the genomes of two dominant species, we found that microorganisms with a higher rrn copy number (6), e.g., Streptomyces scabiei, possessed more genes related to C and N transport and metabolism. In contrast, the Mycobacterium simiae with a lower rrn copy number (1) has more genes associated with secondary metabolite biosynthesis and lipid transport and metabolism. Our finding challenges the concept of microbial life-strategy regulation solely by nutrient availability, highlighting the important contributions of soil stoichiometric balance and pH to microbial strategies in agro-ecosystems under long-term N inputs.
Tao Wang, Jiahui Lin, Xinyi Peng, Yifan Zhao, Haodan Yu, Kankan Zhao, Albert Barberán, Yakov Kuzyakov, Zhongmin Dai (2024). Microbial rrn copy number is associated with soil C: N and pH under long-term fertilization. The Science of The Total Environment, pp. 176675-176675, DOI: 10.1016/j.scitotenv.2024.176675.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
9
Datasets
0
Total Files
0
Language
English
Journal
The Science of The Total Environment
DOI
10.1016/j.scitotenv.2024.176675
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access