RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Microbial response to warming and cellulose addition in a maritime Antarctic soil

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Microbial response to warming and cellulose addition in a maritime Antarctic soil

0 Datasets

0 Files

English
2023
Permafrost and Periglacial Processes
Vol 34 (3)
DOI: 10.1002/ppp.2182

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Francisco J. Matus
Francisco J. Matus

Institution not specified

Verified
Paulina Pradel
León A. Bravo
Carolina Merino
+6 more

Abstract

Maritime Antarctic King George Island (South Shetland Islands) has experienced rapid warming in recent decades, but the impacts on soil organic matter (SOM) decomposition remain ambiguous. Most vegetation cover is dominated by bryophytes (mosses), whereas a few vascular plants, such as Deschampsia antarctica and Colobanthus quitensis grow interspersed. Therefore, SOM is mainly enriched with carbohydrates and C‐alkyl, provided by mosses, which lack lignin as a precursor for aromatic compounds and humus formation. However, there is no clear answer to how substrate and temperature increase changes in Antarctic microbial respiration. We determined in what way SOM mineralization changes with temperature and substrate addition by characterizing the temperature sensitivity (Q 10 ) of soil respiration in an open‐top chamber warming experiment. We hypothesized that: (a) cold‐tolerant microorganisms are well adapted to growing in maritime Antarctic soils (~ 0°C), so would not respond to low and moderate temperature increases because they undergo various metabolic mechanism adjustments until they experience increasing temperatures toward optimum growth (e.g., by enzyme production); and (b) cellulose, as a complex carbonaceous substrate of vegetated areas in Maritime Antarctic soils, activates microorganisms, increasing the Q 10 of soil organic carbon (SOC) mineralization. Soils (5–10 cm) were sampled after four consecutive years of experimental warming for SOC composition, microbial community structure, and C mineralization at 4, 12, and 20°C with and without cellulose addition. Functional group chemoheterotrophs, represented mainly by Proteobacteria, decomposed more refractory SOC (aromatic compounds), as indicated by nuclear magnetic resonance (NMR) spectroscopy, in ambient plots than in warming plots where plants were growing. The C‐CO 2 efflux from the incubation experiment remained stable below 12°C but sharply increased at 20°C. Q 10 varied between 0.4 and 4 and was reduced at 20°C, whereas cellulose addition increased Q 10 . In conclusion, as confirmed during field studies in a climate scenario, cold‐tolerant microorganisms in maritime Antarctic soils were slightly affected by increasing temperature (e.g., 4–12°C), with reduced temperature sensitivity, as summarized in a conceptual model.

How to cite this publication

Paulina Pradel, León A. Bravo, Carolina Merino, Nicole Trefault, Rodrigo Rodríguez, Heike Knicker, Claudia Jara, Giovanni Larama, Francisco J. Matus (2023). Microbial response to warming and cellulose addition in a maritime Antarctic soil. Permafrost and Periglacial Processes, 34(3), pp. 370-383, DOI: 10.1002/ppp.2182.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

9

Datasets

0

Total Files

0

Language

English

Journal

Permafrost and Periglacial Processes

DOI

10.1002/ppp.2182

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access