0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessCurrent consensus on global climate change predicts warming trends with more pronounced temperature changes in winter than summer in the Northern Hemisphere at high latitudes. Moderate increases in soil temperature are generally related to faster rates of soil organic carbon (SOC) decomposition in Northern ecosystems, but there is evidence that SOC stocks have remained remarkably stable or even increased on the Tibetan Plateau under these conditions. This intriguing observation points to altered soil microbial mediation of carbon‐cycling feedbacks in this region that might be related to seasonal warming. This study investigated the unexplained SOC stabilization observed on the Tibetan Plateau by quantifying microbial responses to experimental seasonal warming in a typical alpine meadow. Ecosystem respiration was reduced by 17%–38% under winter warming compared with year‐round warming or no warming and coincided with decreased abundances of fungi and functional genes that control labile and stable organic carbon decomposition. Compared with year‐round warming, winter warming slowed macroaggregate turnover rates by 1.6 times, increased fine intra‐aggregate particulate organic matter content by 75%, and increased carbon stabilized in microaggregates within stable macroaggregates by 56%. Larger bacterial “necromass” (amino sugars) concentrations in soil under winter warming coincided with a 12% increase in carboxyl‐C. These results indicate the enhanced physical preservation of SOC under winter warming and emphasize the role of soil microorganisms in aggregate life cycles. In summary, the divergent responses of SOC persistence in soils exposed to winter warming compared to year‐round warming are explained by the slowing of microbial decomposition but increasing physical protection of microbially derived organic compounds. Consequently, the soil microbial response to winter warming on the Tibetan Plateau may cause negative feedbacks to global climate change and should be considered in Earth system models.
Jing Tian, Ning Zong, Iain P. Hartley, Nianpeng He, Jinjing Zhang, D. S. Powlson, Jizhong Zhou, Yakov Kuzyakov, Fusuo Zhang, Guirui Yu, Jennifer A. J. Dungait (2021). Microbial metabolic response to winter warming stabilizes soil carbon. Global Change Biology, 27(10), pp. 2011-2028, DOI: 10.1111/gcb.15538.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
11
Datasets
0
Total Files
0
Language
English
Journal
Global Change Biology
DOI
10.1111/gcb.15538
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access