RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Microbial iron reduction compensates for phosphorus limitation in paddy soils

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Microbial iron reduction compensates for phosphorus limitation in paddy soils

0 Datasets

0 Files

English
2022
The Science of The Total Environment
Vol 837
DOI: 10.1016/j.scitotenv.2022.155810

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Michaela Dippold
Michaela Dippold

Institution not specified

Verified
Chaoqun Wang
Lukas Thielemann
Michaela Dippold
+8 more

Abstract

Limitation of rice growth by low phosphorus (P) availability is a widespread problem in tropical and subtropical soils because of the high content of iron (Fe) (oxyhydr)oxides. Ferric iron-bound P (Fe(III)-P) can serve as a P source in paddies after Fe(III) reduction to Fe(II) and corresponding H2PO4 − release. However, the relevance of reductive dissolution of Fe(III)-P for plant and microbial P uptake is still an open question. To quantify this, 32P-labeled ferrihydrite (30.8 mg P kg−1) was added to paddy soil mesocosms with rice to trace the P uptake by microorganisms and plants after Fe(III) reduction. Nearly 2% of 32P was recovered in rice plants, contributing 12% of the total P content in rice shoots and roots after 33 days. In contrast, 32P recovery in microbial biomass decreased from 0.5% to 0.08% of 32P between 10 and 33 days after rice transplantation. Microbial biomass carbon (MBC) and dissolved organic C content decreased from day 10 to 33 by 8–54% and 68–77%, respectively, suggesting that the microbial-mediated Fe(III) reduction was C-limited. The much faster decrease of MBC in rooted (by 54%) vs. bulk soil (8–36%) reflects very fast microbial turnover in the rice rhizosphere (high C and oxygen inputs) resulting in the mineralization of the microbial necromass. In conclusion, Fe(III)-P can serve as small but a relevant P source for rice production and could partly compensate plant P demand. Therefore, the P fertilization strategies should consider the P mobilization from Fe (oxyhydr)oxides in flooded paddy soils during rice growth. An increase in C availability for microorganisms in the rhizosphere intensifies P mobilization, which is especially critical at early stages of rice growth.

How to cite this publication

Chaoqun Wang, Lukas Thielemann, Michaela Dippold, Georg Guggenberger, Yakov Kuzyakov, Callum C. Banfield, Tida Ge, Stephanie Guenther, Patrick Bork, Marcus A. Horn, Maxim Dorodnikov (2022). Microbial iron reduction compensates for phosphorus limitation in paddy soils. The Science of The Total Environment, 837, pp. 155810-155810, DOI: 10.1016/j.scitotenv.2022.155810.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

11

Datasets

0

Total Files

0

Language

English

Journal

The Science of The Total Environment

DOI

10.1016/j.scitotenv.2022.155810

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access