0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe Tibetan Plateau’s Kobresia pastures store 2.5% of the world’s soil organic carbon (SOC). Climate change and overgrazing render their topsoils vulnerable to degradation, with SOC stocks declining by 42% and nitrogen (N) by 33% at severely degraded sites. We resolved these losses into erosion accounting for two-thirds, and decreased carbon (C) input and increased SOC mineralization accounting for the other third, and confirmed these results by comparison with a meta-analysis of 594 observations. The microbial community responded to the degradation through altered taxonomic composition and enzymatic activities. Hydrolytic enzyme activities were reduced, while degradation of the remaining recalcitrant soil organic matter by oxidative enzymes was accelerated, demonstrating a severe shift in microbial functioning. This may irreversibly alter the world´s largest alpine pastoral ecosystem by diminishing its C sink function and nutrient cycling dynamics, negatively impacting local food security, regional water quality and climate.
Andreas Breidenbach, Per-Marten Schleuß, Shibin Liu, Dominik Schneider, Michaela Dippold, Tilman de la Haye, Georg Miehe, Felix Heitkamp, Elke Seeber, Kyle Mason‐Jones, Xingliang Xu, Huanming Yang, Jianchu Xu, Tsechoe Dorji, Matthias Gube, Helge Norf, Jutta Meier, Georg Guggenberger, Yakov Kuzyakov, Sandra Spielvogel (2022). Microbial functional changes mark irreversible course of Tibetan grassland degradation. Nature Communications, 13(1), DOI: 10.1038/s41467-022-30047-7.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
20
Datasets
0
Total Files
0
Language
English
Journal
Nature Communications
DOI
10.1038/s41467-022-30047-7
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access