RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Microbial C:N:P stoichiometry and turnover depend on nutrients availability in soil: A 14C, 15N and 33P triple labelling study

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2019

Microbial C:N:P stoichiometry and turnover depend on nutrients availability in soil: A 14C, 15N and 33P triple labelling study

0 Datasets

0 Files

English
2019
Soil Biology and Biochemistry
Vol 131
DOI: 10.1016/j.soilbio.2019.01.017

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Michaela Dippold
Michaela Dippold

Institution not specified

Verified
Jie Chen
Jasmin Seven
Thomas Zilla
+3 more

Abstract

Microbial biomass turnover and the associated recycling of carbon (Cmic), nitrogen (Nmic) and phosphorus (Pmic) depend on their stoichiometric relationships and plays a pivotal role for soil fertility. This study examines the responses of Cmic, Nmic, Pmic, the microbial respiration rate (CO2 efflux), and the total DNA content to C and nutrient addition in forest soils with very low (Low-P) and high P (High-P) contents. Both the Low-P and High-P soils were treated with a low and high level of C, N and P (5% and 200% of Cmic, Nmic and Pmic). Phosphorus (33P) was added before the addition of C (14C) and N (15N) to investigate the potential P limitation. We hypothesized two modes of microbial biomass C and nutrient turnover: 1) maintenance through intracellular metabolisms and/or 2) microbial growth and death through necromass reutilization. In Low-P soil, the 2-day-sooner increase of Cmic and Pmic compared to the increase of CO2 efflux and DNA content after high CN input showed the rapid initial uptake of C and limiting nutrients into microbial cells. It also demonstrated a lag period before microbial growth commenced. In High-P soil, however, the CO2 efflux and DNA content increased simultaneously with increases in microbial biomass, reflecting the microbial capacity for immediate growth. Afterwards, CO2 efflux and DNA content dropped to the level before CNP addition, with a decline of Cmic and Pmic in Low-P soil and a decline of Nmic in High-P soil, suggesting a C and P limitation in Low-P soil and N limitation in High-P soil. Under low CNP addition, the microorganisms in High-P soil are ready to grow, while those in Low-P soil are mainly in maintenance mode. The microorganisms under maintenance in low-P soil can switch to growth/death mode after removing the nutrient limitation. High CNP input caused a non-homeostatic response of Cmic: Nmic: Pmic stoichiometry from 691:105:1 to 33:1:1 in Low-P soil, mainly resulting from a higher storage of the limiting elements (C and P) in microbial biomass. The ratio remained stable under low CNP addition due to the endogenous metabolism of C and nutrient at maintenance. The C and nutrient were turnovered much faster by microorganisms in the growth/death mode, confirming a key principle of ecology: the stronger the limitation by an element, the more efficiently that element is retained within an organism, and the more intensively it is reused. The triple labeling approach linked with Cmic: Nmic: Pmic stoichiometry helped to identify the dominant maintenance and growth/death modes of microbial biomass CNP turnover in nutrient-limited and -unlimited soil.

How to cite this publication

Jie Chen, Jasmin Seven, Thomas Zilla, Michaela Dippold, Еvgenia Blagodatskaya, Yakov Kuzyakov (2019). Microbial C:N:P stoichiometry and turnover depend on nutrients availability in soil: A 14C, 15N and 33P triple labelling study. Soil Biology and Biochemistry, 131, pp. 206-216, DOI: 10.1016/j.soilbio.2019.01.017.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Soil Biology and Biochemistry

DOI

10.1016/j.soilbio.2019.01.017

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access