0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMicrobial anabolism relative to catabolism, reflected by the C use efficiency (CUE), determines the fate of C transformation in soil. Understanding how the microbial CUE and microbial necromass respond to fertilization is crucial for the evaluation of the C sequestration potential in intensively managed paddy soils. We examined the microbial CUE, microbial biomass turnover, and necromass accumulation in rice rhizosphere and bulk soils subjected to long-term (31 years) fertilizations: no fertilizers (control), mineral fertilizers alone (NPK), mineral fertilizers plus rice straw incorporation (NPK-Straw), and mineral fertilizers combined with a low or a high amount of organic manure (NPK-lowM or NPK-highM). The microbial CUE was determined by 18O incorporation into DNA. Microbial necromass accumulation was quantified by the biomarker analysis of amino sugars. Rice straw and manure incorporation reduced the microbial CUE in the rhizosphere soil, whereas the CUE remained constant in the bulk soil. CUE was lower in the rhizosphere soil than in the bulk soil due to nutrients uptake and root exudate release by rice plants, leading to a higher C/nutrient ratio in the rhizosphere. Organic inputs strengthened these rhizosphere processes and could thus weaken the relative potential of C sequestration. The microbial CUE decreased with the increase of the available C/N ratio in the rhizosphere but not in the bulk soil. The microbial CUE mainly depended on the respiration in the bulk soil and on the microbial growth in the rhizosphere soil, indicating the divergent microbial utilization of organic substrates between rhizosphere and bulk soils. In both rhizosphere and bulk soils, organic inputs promoted the microbial biomass growth rate and further increased the amount of microbial necromass by 27–52 % compared with NPK alone, which was highly correlated with the soil organic C pools. Despite enhancing rhizosphere respiration, our findings highlight that rice straw and manure applications increase C sequestration in paddy soils by enhancing the net flux of microbial biomass formation, and consequently promoting necromass accumulation.
Xiangbi Chen, Yinhang Xia, Yichao Rui, Zhao Ning, Yajun Hu, Haiming Tang, Hongbo He, Huixin Li, Yakov Kuzyakov, Tida Ge, Jinshui Wu, Yirong Su (2020). Microbial carbon use efficiency, biomass turnover, and necromass accumulation in paddy soil depending on fertilization. Agriculture Ecosystems & Environment, 292, pp. 106816-106816, DOI: 10.1016/j.agee.2020.106816.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
12
Datasets
0
Total Files
0
Language
English
Journal
Agriculture Ecosystems & Environment
DOI
10.1016/j.agee.2020.106816
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access