RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2018

Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation

0 Datasets

0 Files

English
2018
Environmental Pollution
Vol 236
DOI: 10.1016/j.envpol.2018.01.099

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Fang-jie Zhao
Fang-jie Zhao

Nanjing Agricultural University

Verified
Yuping Yang
Hongmei Zhang
Haiyan Yuan
+4 more

Abstract

Arsenic (As) contamination is a global problem. Straw incorporation is widely performed in As contaminated paddy fields. To understand how straw and straw biochar incorporation affect As transformation and translocation in the soil-microbe-rice system, a pot experiment was carried out with different dosages of rice straw and straw biochar application. Results showed that both straw biochar and straw application significantly increased As mobility. Straw biochar mobilized As mainly through increasing soil pH and DOM content. Straw incorporation mainly through enhancing As release from iron (Fe) minerals and arsenate (As(V)) reduction to arsenite (As(III)). Straw biochar didn't significantly affect As methylation, while straw incorporation significantly enhanced As methylation, elevated dimethylarsenate (DMA) concentration in soil porewater and increased As volatilization. Straw biochar didn't significantly change total As accumulation in rice grains, but decreased As(III) accumulation by silicon (Si) inhibition. Straw incorporation significantly increased DMA, but decreased As(III) concentration in rice grains. After biochar application, dissolved As was significantly positively correlated with the abundance of Bacillus, indicating that Bacillus might be involved in As release, and As(III) concentration in polished grains was negatively correlated with Si concentration. The significant positive correlation between dissolved As with Fe and the abundance of iron-reducing bacteria suggested the coupling of As and Fe reduction mediated by iron-reducing bacteria. The significant positive correlation between DMA in rice grains and the abundance of methanogenic bacteria indicated that methanogenic bacteria could be involved in As methylation after straw application. The results of this study would advance the understanding how rice straw incorporation affects As fate in soil-microbe-rice system, and provide some guidance to straw incorporation in As contaminated paddy soil. This study also revealed a wealth of microorganisms in the soil environment that dominate As mobility and transformation after straw incorporation.

How to cite this publication

Yuping Yang, Hongmei Zhang, Haiyan Yuan, Guilan Duan, Decai Jin, Fang-jie Zhao, Yong‐Guan Zhu (2018). Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Environmental Pollution, 236, pp. 598-608, DOI: 10.1016/j.envpol.2018.01.099.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2018

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Environmental Pollution

DOI

10.1016/j.envpol.2018.01.099

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access