0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe continuous malicious attacks on Internet of Things devices pose a potential threat to the economic and private information security of end-users, especially on the dominant Android devices. Combining static analysis methods with deep Learning is a promising approach to defend against that. This kind of method has two limitations: the first is that the current single-permission mechanism is not insufficient to regulate interapplication resource acquisition; another problem is that current work on feature learning is dedicated to modifying a single network structure, which may result in a suboptimal solution. In this study, to solve the abovementioned problems, we propose a novel malware detection framework MFEMDroid, which combines multitype features analysis and ensemble modeling. The Provider feature, facilitating information requests between applications (apps) and serving as an indispensable data storage method, plays a vital role in characterizing app behavior. Hence, we extract permissions and Provider features to comprehensively characterize app behavior and probe potentially dangerous combinations between or within these features. To address oversparse datasets and reduce feature learning overhead, we employ an auto-encoder for feature dimensionality reduction. Furthermore, we design an ensemble network based on SENet, ResNet, and the evolutionary convolutional neural network Squeeze Excitation Residual Network (SEResNet) to explore the hidden associations between different types of features from multiple perspectives. We performed extensive experiments to evaluate its method performance on real-world samples. The evaluation results demonstrate that the proposed framework can detect malware with an accuracy of 95.38%, which is much better than state-of-the-art solutions. These promising experimental results show that MFEMDroid is an effective approach to detect Android malware.
Wei Gu, Hongyan Xing, Tianhao Hou (2024). MFEMDroid: A Novel Malware Detection Framework Using Combined Multitype Features and Ensemble Modeling. , 2024, DOI: https://doi.org/10.1049/2024/2850804.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1049/2024/2850804
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access