RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. methylSCOPA and META-methylSCOPA: software for the analysis and aggregation of epigenome-wide association studies of multiple correlated phenotypes

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
en
2019

methylSCOPA and META-methylSCOPA: software for the analysis and aggregation of epigenome-wide association studies of multiple correlated phenotypes

0 Datasets

0 Files

en
2019
DOI: 10.1101/656918

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Paul M Ridker
Paul M Ridker

Harvard University

Verified
Harmen H. M. Draisma
Jun Liu
Igor Pupko
+11 more

Abstract

Abstract Background Multi-phenotype genome-wide association studies (MP-GWAS) of correlated traits have greater power to detect genotype–phenotype associations than single-trait GWAS. However, no multi-phenotype analysis method exists for epigenome-wide association studies (EWAS). Results We extended the SCOPA approach developed by us to “methylSCOPA” software in C++ by ‘reversely’ regressing DNA hyper/hypo-methylation information on a linear combination of phenotypes. We evaluated two models of association between DNA methylation and fasting glucose (FG) and insulin (FI) levels: Model 1, including FG, FI, and three measured potential confounders (body mass index [BMI], fasting serum triglyceride levels [TG], and waist/hip ratio [WHR]), and Model 2, including FG and FI corrected for the effects of BMI, TG, and WHR. Both models were additionally corrected for participant sex and smoking status (current/ever/never). We meta-analyzed the cohort-specific MP-EWAS results with our novel software META-methylSCOPA, mapped genomic locations to CGCh37/hg19, and adopted P <1×10 −7 to denote epigenome-wide significance. We used the Illumina Infinium HumanMethylation450K BeadChip array data from the Northern Finland Birth Cohorts (NFBC) 1966/1986. We quality-controlled the data, regressed out the effects of measured potential confounders, and normalized the methylation signal intensity and FI data. The MP-EWAS included data for 643/457 individuals from NFBC1966 and NFBC1986, respectively (total N=1,100). In Model 1, we detected epigenome-wide significant association in the MP-EWAS meta-analysis at cg13708645 (chr12:121,974,305; P =1.2×10 −8 ) within KDM2B gene. Single-trait effects within KDM2B were on FI, BMI, and WHR. Model with effect on BMI and WHR showed the strongest association at this locus, while effect on FI in single-phenotype analysis was driven by the effect of adiposity. In Model 2, the strongest association was at cg05063096 (chr3:143,689,810; P =2.3×10 −7 ) annotated to C3orf58 with strongest effect on FI in single-trait analysis and multi-phenotype effect on FI and WHI within Model 1. We characterized the effects of established EWAS loci for diabetes and its risk factors and detected suggestive (p<0.01) associations at six markers including PHGDH, TXNIP, SLC7A11, CPT1A, MYO5C and ABCG1 , through the dissection of the multi-phenotype effects in Model 1. Conclusions We implemented MP-EWAS in methylSCOPA and demonstrated its enhanced power over single-trait EWAS for correlated phenotypes in large-scale data.

How to cite this publication

Harmen H. M. Draisma, Jun Liu, Igor Pupko, Ayşe Demirkan, Zhanna Balkhiyarova, Andrew P. Morris, Reedik Mägi, Matthias Wielscher, Saqib Hassan, Cornelia M. van Duijn, Sylvain Sebért, Paul M Ridker, Marika Kaakinen, Inga Prokopenko (2019). methylSCOPA and META-methylSCOPA: software for the analysis and aggregation of epigenome-wide association studies of multiple correlated phenotypes. , DOI: https://doi.org/10.1101/656918.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2019

Authors

14

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1101/656918

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access