0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSoil greenhouse gas emissions from cattle grazed and un-grazed temperate upper salt marsh were measured using dark static chambers, monthly for one year. Below-ground gas sampling tubes were also used to measure soil methane (CH4) concentrations. CH4 efflux from grazed and un-grazed salt marsh did not differ significantly although grazing did lead to ‘hotspots’ of underground CH4 (up to 6% of total air volume) and CH4 efflux (peak of 9 mg m−2 h−1) significantly linked to high soil moisture content, low soil temperatures and the presence of Juncus gerardii. Carbon dioxide (CO2) efflux was greater from the un-grazed marsh (mean of 420 mg m−2 h−1) than the grazed marsh (mean of 333 mg m−2 h−1) throughout most of the year and was positively correlated with the deeper water table and greater soil temperatures. Grazing was not a significant predictor of nitrous oxide (N2O) soil emissions. Global Warming Potential (GWP; over 100 years), calculated from mean yearly chamber fluxes for CH4 and CO2, did not differ significantly with grazing treatment. Seasonal variation in the key drivers of soil greenhouse gas efflux; soil temperature, moisture and water table, plus the presence or absence of aerenchymatous plants such as J. gerardii were more important to the magnitude of greenhouse gas emissions than grazing management per se.
Hilary Ford, Angus Garbutt, Laurence Jones, Davey L Jones (2012). Methane, carbon dioxide and nitrous oxide fluxes from a temperate salt marsh: Grazing management does not alter Global Warming Potential. Estuarine Coastal and Shelf Science, 113, pp. 182-191, DOI: 10.1016/j.ecss.2012.08.002.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2012
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Estuarine Coastal and Shelf Science
DOI
10.1016/j.ecss.2012.08.002
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access