0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn metal-enhanced fluorescence (MEF), the localized surface plasmon resonances of metallic nanostructures amplify the absorption of excitation light and assist in radiating the consequent fluorescence of nearby molecules to the far-field. This effect is at the base of various technologies that have strong impact on fields such as optics, medical diagnostics and biotechnology. Among possible emission bands, those in the near-infrared (NIR) are particularly intriguing and widely used in proteomics and genomics due to its noninvasive character for biomolecules, living cells, and tissues, which greatly motivates the development of effective, and eventually multifunctional NIR-MEF platforms. Here we demonstrate NIR-MEF substrates based on Au nanocages micropatterned with a tight spatial control. The dependence of the fluorescence enhancement on the distance between the nanocage and the radiating dipoles is investigated experimentally and modeled by taking into account the local electric field enhancement and the modified radiation and absorption rates of the emitting molecules. At a distance around 80 nm, a maximum enhancement up to 2-7 times with respect to the emission from pristine dyes (in the region 660 nm-740 nm) is estimated for films and electrospun nanofibers. Due to their chemical stability, finely tunable plasmon resonances, and large light absorption cross sections, Au nanocages are ideal NIR-MEF agents. When these properties are integrated with the hollow interior and controllable surface porosity, it is feasible to develop a nanoscale system for targeted drug delivery with the diagnostic information encoded in the fluorophore.
Andrea Camposeo, Luana Persano, Rita Manco, Yi Wang, Pompilio Del Carro, Chao Zhang, Zhi-Yuan Li, Dario Pisignano, Younan Xia (2015). Metal-Enhanced Near-Infrared Fluorescence by Micropatterned Gold Nanocages. , 9(10), DOI: https://doi.org/10.1021/acsnano.5b03624.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsnano.5b03624
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access