0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAntimicrobial resistance (AMR) is a global health challenge, with hospitals and wastewater treatment plants (WWTPs) serving as significant pathways for the dissemination of antibiotic resistance genes (ARGs). This study investigates the potential of wastewater-based epidemiology (WBE) as an early warning system for assessing the burden of AMR at the population level. In this comprehensive year-long study, effluent was collected weekly from three large hospitals, and treated and untreated wastewater were collected monthly from three associated community WWTPs. Metagenomic analysis revealed a significantly higher relative abundance and diversity of ARGs in hospital wastewater than in WWTPs. Notably, ARGs conferring resistance to clinically significant antibiotics such as β-lactams, aminoglycosides, sulfonamides, and tetracyclines were more prevalent in hospital effluents. Conversely, resistance genes associated with rifampicin and MLS (macrolides-lincosamide-streptogramin) were more commonly detected in the WWTPs, particularly in the treated effluent. Network analysis identified the potential bacterial hosts, which are the key carriers of these ARGs. The study further highlighted the variability in ARG removal efficiencies across the WWTPs, with none achieving complete elimination of ARGs or a significant reduction in bacterial diversity. Additionally, ARG profiles remained relatively consistent in hospital and community wastewater throughout the study, indicating a persistent release of a baseload of ARGs and pathogenic bacteria into surface waters, potentially polluting aquatic environments and entering the food chain. The study underscores the need for routine WBE surveillance, enhanced wastewater treatment strategies, and hospital-level source control measures to mitigate AMR dissemination into the environment.
Reshma Silvester, William Bernard Perry, Gordon Webster, Laura Rushton, Amy Baldwin, Daniel A. Pass, Nathaniel Healey, Kata Farkas, Noel Craine, Gareth Cross, Peter Kille, Andrew J. Weightman, Davey L Jones (2025). Metagenomics unveils the role of hospitals and wastewater treatment plants on the environmental burden of antibiotic resistance genes and opportunistic pathogens. The Science of The Total Environment, 961, pp. 178403-178403, DOI: 10.1016/j.scitotenv.2025.178403.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
13
Datasets
0
Total Files
0
Language
English
Journal
The Science of The Total Environment
DOI
10.1016/j.scitotenv.2025.178403
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access