0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAmylin is part of the endocrine pancreatic system that contributes to glycemic control, regulating blood glucose levels. However, human amylin has a high tendency to aggregate, forming isolated amylin deposits that are observed in patients with type 2 diabetes mellitus. In search of new inhibitors of amylin aggregation, we undertook the chemical analyses of five marine macroorganisms encountered in high populations in the Red Sea and selected a panel of 10 metabolites belonging to different chemical classes to evaluate their ability to inhibit the formation of amyloid deposits in the human amylin peptide. The thioflavin T assay was used to examine the kinetics of amyloid aggregation, and atomic force microscopy was employed to conduct a thorough morphological examination of the formed fibrils. The potential ability of these compounds to interact with the backbone of peptides and compete with β-sheet formation was analyzed by quantum calculations, and the interactions with the amylin peptide were computationally examined using molecular docking. Despite their structural similarity, it could be observed that the hydrophobic and hydrogen bond interactions of pyrrolidinones 9 and 10 with the protein sheets result in one case in a stable aggregation, while in the other, they cause distortion from aggregation.
Mawadda Alghrably, Mohamed A. Tammam, Aikaterini Koutsaviti, Vassilios Roussis, Xabier Lopez, Giulia Bennici, Abeer A. Sharfalddin, Hanan Almahasheer, Carlos M. Duarte, Abdul‐Hamid Emwas, Efstathia Ioannou, Mariusz Jaremko (2024). Metabolites from Marine Macroorganisms of the Red Sea Acting as Promoters or Inhibitors of Amylin Aggregation. , 14(8), DOI: https://doi.org/10.3390/biom14080951.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
12
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.3390/biom14080951
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access