0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract MeCP2 – a chromatin-binding protein associated with Rett syndrome – has two main isoforms, MeCP2-E1 and MeCP2-E2, with 96% amino acid identity differing in a few N-terminal amino acid residues. Previous studies have shown brain region-specific expression of these isoforms which, in addition to their different cellular localization and differential expression during brain development, suggest they may also have non-overlapping molecular mechanisms. However, differential functions of MeCP2-E1 and E2 remain largely unexplored. Here, we show that the N-terminal domains (NTD) of MeCP2-E1 and E2 modulate the ability of the methyl binding domain (MBD) to interact with DNA as well as influencing the turnover rates, binding dynamics, response to nuclear depolarization, and circadian oscillations of the two isoforms. Our proteomics data indicate that both isoforms exhibit unique interacting protein partners. Moreover, genome-wide analysis using ChIP-seq provide evidence for a shared as well as a specific regulation of different sets of genes. Our findings provide insight into the functional complexity of MeCP2 by dissecting differential aspects of its two isoforms. Significance Whether the two E1 and E2 isoforms of MeCP2 have different structural and/or functional implications has been highly controversial and is not well known. Here we show that the relatively short N-terminal sequence variation between the two isoforms impinges them with an important DNA binding difference. Moreover, MeCP2-E1 and E2 exhibit a different cellular dynamic behavior and have some distinctive interacting partners. In addition, while sharing genome occupancy they specifically bind to several distinctive genes.
Alexia Martínez de Paz, Leila Khajavi, Hélène Martin, Rafael Claveria‐Gimeno, Susanne tom Dieck, Manjinder S. Cheema, José V. Sánchez‐Mut, Malgorzata M. Moksa, Annaïck Carles, Nick I. Brodie, Taimoor I. Sheikh, Melissa E. Freeman, Evgeniy V. Petrotchenko, Christoph H. Borchers, Erin M. Schuman, Matthias Zytnicki, Adrián Velázquez‐Campoy, Olga Abián, Martin Hirst, Manel Esteller, John B. Vincent, Cécile E. Malnou, Juan Ausiö (2018). MeCP2-E1 isoform is a dynamically expressed, weakly DNA-bound protein with different protein and DNA interactions compared to MeCP2-E2. , DOI: https://doi.org/10.1101/392092.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2018
Authors
23
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1101/392092
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access