0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Mechanoluminescent (ML) materials that directly convert mechanical energy into photon emission have emerged as promising candidates for various applications. Despite the recent advances in the development of both novel and conventional ML materials, the limited access to ML materials that simultaneously have the attributes of high brightness, low cost, self‐recovery, and stability, and the lack of appropriate designs for constructing ML devices represent significant challenges that remain to be addressed to boost the practical application of ML materials. Herein, ML hybrids derived from a natural source, waste eggshell, with the aforementioned attributes are demonstrated. The introduction of the eggshell not only enables the preparation of the hybrid in a simple and cost‐effective manner but also contributes to the homochromatism (red, green, or blue emission), high brightness, and robustness of the resultant ML hybrids. The significant properties of the ML hybrids, together with the proposed structural design, such as porosity or core–shell structure, could expedite a series of mechanic‐optical applications, including the self‐luminous shoes for the conversion of human motions into light and light generators that efficiently harvest water wave energy. The fascinating properties, versatile designs, and the efficient protocol of “turning waste into treasure” of the ML hybrids represent significant advances in ML materials, promising a leap to the practical applications of this flouring material family. image
Yu Fu, Lin Dong, Wenchao Gao, Zhong Lin Wang, Caofeng Pan, Chunfeng Wang, Ronghua Ma, Dengfeng Peng, Xianhu Liu, Jing Li, Boru Jin, Aixian Shan (2021). Mechanoluminescent hybrids from a natural resource for energy‐related applications. , 3(11), DOI: https://doi.org/10.1002/inf2.12250.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
12
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/inf2.12250
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access