RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Mechano-driven chemical reactions

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2024

Mechano-driven chemical reactions

0 Datasets

0 Files

en
2024
DOI: 10.1016/j.gee.2024.08.001

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Shaoxin Li
Jiajin Liu
Zhong Lin Wang
+1 more

Abstract

Traditional chemical processes often generate substantial waste, leading to significant pollution of water, air, and soil. Developing eco-friendly chemical methods is crucial for economic and environmental sustainability. Mechano-driven chemistry, with its potential for material recyclability and minimal byproducts, is well-aligned with green chemistry principles. Despite its origins over 2000 years ago and nearly 200 years of scientific investigation, mechano-driven chemistry has not been widely implemented in practice. This is likely due to a lack of comprehensive understanding and the complex physical effects of mechanical forces, which challenge reaction efficiency and scalability. This review summarizes the historical development of mechano-driven chemistry and discusses its progress across various physical mechanisms, including mechanochemistry, tribochemistry, piezochemistry, and contact electrification (CE) chemistry. CE-induced chemical reactions, involving ion transfer, electron transfer, and radical generation, are detailed, emphasizing the dominant role of radicals initiated by electron transfer and the influence of ion transfer through electrical double layer (EDL) formation. Advancing efficient, eco-friendly, and controllable green chemical technologies can reduce reliance on traditional energy sources (such as electricity and heat) and toxic chemical reagents, fostering innovation in material synthesis, catalytic technologies, and establishing a new paradigm for broader chemical applications.

How to cite this publication

Shaoxin Li, Jiajin Liu, Zhong Lin Wang, Di Wei (2024). Mechano-driven chemical reactions. , DOI: https://doi.org/10.1016/j.gee.2024.08.001.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

4

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1016/j.gee.2024.08.001

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access