RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Mechanisms of carbon sequestration and stabilization by restoration of arable soils after abandonment: A chronosequence study on Phaeozems and Chernozems

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2019

Mechanisms of carbon sequestration and stabilization by restoration of arable soils after abandonment: A chronosequence study on Phaeozems and Chernozems

0 Datasets

0 Files

English
2019
Geoderma
Vol 354
DOI: 10.1016/j.geoderma.2019.113882

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
I. N. Kurganova
Agustı́n Merino
Valentin Lopes de Gerenyu
+4 more

Abstract

Abandonment of croplands ongoing on 220 million ha worldwide contributes strongly to soil restoration by improvement of degraded properties and medium- and long-term carbon (C) sequestration in post-agricultural ecosystems. Two interrelated processes – decomposition and stabilization of soil organic carbon (SOC) – govern SOC dynamics and affect the C source or sink functions of former croplands. We investigated how the abandonment of arable soils affects (i) accumulation of SOC, its composition, stability, and turnover during the post-agricultural restoration of soils, and (ii) microbial activity parameters. A chronosequence study was carried in two bioclimatic zones of European Russia: deciduous forest (Luvic Phaeozems, PH-chronosequence) and dry steppe (Calcic Chernozems, CH-chronosequence). Each chronosequence included an arable soil, 3–4 soils abandoned at increasing time periods (up to 35 years), and natural soil: never cropped Phaeozem and completely restored Chernozem. We combined the results of nuclear magnetic resonance (NMR), thermal analysis including Differential Scanning Calorimetry and Derivative Thermogravimetry, long-term incubation for SOC mineralization, and microbiological activity (basal respiration and microbial C content). Degraded Phaeozems with low SOC amount had much higher relative increase in SOC content (134%) during the post-agricultural restoration compared to SOC-rich Chernozems (38%). SOC gains were recorded in all organic compound classes identified by NMR and thermal analysis, but the increase of recalcitrant SOC was more pronounced in the post-agricultural Chernozems than in the Phaeozems. The post-agricultural Chernozems were characterized by higher SOC aliphaticity and aromaticity than Phaeozems. Microbial activity and biodegradable SOC increased gradually during post-agricultural restoration. Being mostly a function of climate and vegetation, the soil type was the primary factor explaining the greatest portion (54–88%) of the total variance for most soil and microbial parameters. Concluding, despite SOC content increased in both Chernozems and Phaeozems during the post-agricultural restoration, the mechanisms of C sequestration and stabilization were dependent on climate, vegetation, and on the degradation intensity during the agricultural use. The accumulation of organic compounds was specific for virgin soils dominating in deciduous forest and steppes, and had direct consequences for microbial activities, C turnover and sequestration.

How to cite this publication

I. N. Kurganova, Agustı́n Merino, Valentin Lopes de Gerenyu, N. Barros, Olga Kalinina, Luise Giani, Yakov Kuzyakov (2019). Mechanisms of carbon sequestration and stabilization by restoration of arable soils after abandonment: A chronosequence study on Phaeozems and Chernozems. Geoderma, 354, pp. 113882-113882, DOI: 10.1016/j.geoderma.2019.113882.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Geoderma

DOI

10.1016/j.geoderma.2019.113882

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access