0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSince the development of chiral phosphino-oxazoline iridium catalysts, which hydrogenate unfunctionalized alkenes enantioselectively, the asymmetric hydrogenation of prochiral olefins has become important in the production of chiral compounds. For the last 10 years, details of the mechanism, including formal oxidation state assignment of the metal center and the nature of intermediates and transition states have been debated. Various contributions have been given from a theoretical point of view, but due to the size of the structures, these have been forced to rely on density functional theory (DFT) methods. In our investigation of the catalytic cycle, we employ both DFT and a correlated ab initio method, namely, the newly implemented domain-based local pair natural orbital coupled-cluster theory with single and double excitations and the inclusion of perturbative triples correction (DLPNO-CCSD(T)). Our results show that the most likely active paths involve the formation of an intermediate Ir(V) species. Furthermore, we have been able to predict the absolute configuration of the major products, and where comparison to experiment is possible, the results of our calculations agree with the enantiomeric excess obtained from hydrogenating five prochiral substrates. This work also shows that it is now possible to study catalytic reactions with untruncated models (having up to 88 atoms) at the CCSD(T) level of theory.
Manuel Sparta, Christoph Riplinger, Frank Neese (2014). Mechanism of Olefin Asymmetric Hydrogenation Catalyzed by Iridium Phosphino-Oxazoline: A Pair Natural Orbital Coupled Cluster Study. Journal of Chemical Theory and Computation, 10(3), pp. 1099-1108, DOI: 10.1021/ct400917j.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2014
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Journal of Chemical Theory and Computation
DOI
10.1021/ct400917j
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access