0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThrough millions of years of evolution, bones have developed a complex and elegant hierarchical structure, utilizing tropocollagen and hydroxyapatite to attain an intricate balance between modulus, strength, and toughness. In this study, continuous fiber silk composites (CFSCs) of large size are prepared to mimic the hierarchical structure of natural bones, through the inheritance of the hierarchical structure of fiber silk and the integration with a polyester matrix. Due to the robust interface between the matrix and fiber silk, CFSCs show maintained stable long-term mechanical performance under wet conditions. During in vivo degradation, this material primarily undergoes host cell-mediated surface degradation, rather than bulk hydrolysis. We demonstrate significant capabilities of CFSCs in promoting vascularization and macrophage differentiation toward repair. A bone defect model further indicates the potential of CFSC for bone graft applications. Our belief is that the material family of CFSCs may promise a novel biomaterial strategy for yet to be achieved excellent regenerative implants.
Wenhan Tian, Yuzeng Liu, Bo Han, Fengqi Cheng, Kang Yang, Weiyuan Hu, Dongdong Ye, Sujun Wu, Jiping Yang, Qi Chen, Yong Hai, Robert O. Ritchie, Guanping He, Juan Guan (2024). Mechanically robust surface-degradable implant from fiber silk composites demonstrates regenerative potential. Bioactive Materials, 45, pp. 584-598, DOI: 10.1016/j.bioactmat.2024.11.036.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
14
Datasets
0
Total Files
0
Language
English
Journal
Bioactive Materials
DOI
10.1016/j.bioactmat.2024.11.036
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access