RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Mechanically robust surface-degradable implant from fiber silk composites demonstrates regenerative potential

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Mechanically robust surface-degradable implant from fiber silk composites demonstrates regenerative potential

0 Datasets

0 Files

English
2024
Bioactive Materials
Vol 45
DOI: 10.1016/j.bioactmat.2024.11.036

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Robert O. Ritchie
Robert O. Ritchie

University of California, Berkeley

Verified
Wenhan Tian
Yuzeng Liu
Bo Han
+11 more

Abstract

Through millions of years of evolution, bones have developed a complex and elegant hierarchical structure, utilizing tropocollagen and hydroxyapatite to attain an intricate balance between modulus, strength, and toughness. In this study, continuous fiber silk composites (CFSCs) of large size are prepared to mimic the hierarchical structure of natural bones, through the inheritance of the hierarchical structure of fiber silk and the integration with a polyester matrix. Due to the robust interface between the matrix and fiber silk, CFSCs show maintained stable long-term mechanical performance under wet conditions. During in vivo degradation, this material primarily undergoes host cell-mediated surface degradation, rather than bulk hydrolysis. We demonstrate significant capabilities of CFSCs in promoting vascularization and macrophage differentiation toward repair. A bone defect model further indicates the potential of CFSC for bone graft applications. Our belief is that the material family of CFSCs may promise a novel biomaterial strategy for yet to be achieved excellent regenerative implants.

How to cite this publication

Wenhan Tian, Yuzeng Liu, Bo Han, Fengqi Cheng, Kang Yang, Weiyuan Hu, Dongdong Ye, Sujun Wu, Jiping Yang, Qi Chen, Yong Hai, Robert O. Ritchie, Guanping He, Juan Guan (2024). Mechanically robust surface-degradable implant from fiber silk composites demonstrates regenerative potential. Bioactive Materials, 45, pp. 584-598, DOI: 10.1016/j.bioactmat.2024.11.036.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

14

Datasets

0

Total Files

0

Language

English

Journal

Bioactive Materials

DOI

10.1016/j.bioactmat.2024.11.036

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access