0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWe demonstrate a mechanical−electrical trigger using a ZnO piezoelectric fine-wire (PFW) (microwire, nanowire). Once subjected to mechanical impact, a bent PFW creates a voltage drop across its width, with the tensile and compressive surfaces showing positive and negative voltages, respectively. The voltage and current created by the piezoelectric effect could trigger an external electronic system, thus, the impact force/pressure can be detected. The response time of the trigger/sensor is ∼10 ms. The piezoelectric potential across the PFW has a lifetime of ∼100 s, which is long enough for effectively "gating" the transport current along the wire; thus a piezoelectric field effect transistor is possible based on the piezotronic effect.
Jun Zhou, Fei Peng, Yifan Gao, Yudong Gu, Jin Liu, Gang Bao, Zhong Lin Wang (2008). Mechanical−Electrical Triggers and Sensors Using Piezoelectric Micowires/Nanowires. , 8(9), DOI: https://doi.org/10.1021/nl8010484.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2008
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/nl8010484
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access