0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe effects of conductive rubber crumbs on the mechanical properties and self-sensing capacities of cementitious composites are investigated in this study. The rubberized cementitious composites with five different contents of conductive rubber crumbs are incorporated, ranging from 0%, 10%, 20%, 30% and 40% by mass of fine aggregate. Under the uniaxial cyclic compression, all the conductive rubber crumbs–filled cement composites exhibit excellent repeatability of piezoresistivity. The mortar with 20% conductive rubber crumbs at a water-to-binder ratio of 0.42 displayed the best piezoresistive sensitivity. Based on the relative positions of conductive rubber crumbs in the rubberized cement mortar, three conductive mechanisms were proposed for the conductive rubber crumbs, including complete isolation state, neighbouring state and the contact state. The isolation state plays a dominant role when the content of the conductive rubber crumbs is low, in which the piezoresistive behaviour is mainly controlled by the resistivity changes in cement matrix. In the neighbouring state, pores or voids in the gaps between nearby conductive rubber crumbs make the conductive rubber crumbs easier to connect, thus decreasing the resistivity under uniaxial compression. As for the contact state, the decreased contact resistance and the absence of sand between conductive rubber crumbs lead to higher resistivity changes under cyclic compression. The related results indicate that conductive rubber crumbs in cement mortar have application potentials for structural health monitoring.
Wenkui Dong, Wengui Li, Kejin Wang, K Vessalas, Shi Shun Zhang (2020). Mechanical strength and self-sensing capacity of smart cementitious composite containing conductive rubber crumbs. , 31(10), DOI: https://doi.org/10.1177/1045389x20916788.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1177/1045389x20916788
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access