0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSmoke movement and the temperature beneath the ceiling in enclosed channel were investigated experimentally and theoretically. The experimental results show that the maximum smoke temperature decreases with an increasing flame inclination angle when fire source is moving away from the channel center in Region I (within the dimensionless distance for 0.64), which is caused by the gas velocity difference of the two sides of flame. However, when the dimensionless distance is >0.64, the maximum smoke temperature was observed to rise. In addition, an existing model was improved to predict the maximum smoke temperature in enclosed channel applying it to different boundary conditions. Its predictions fit reasonably well when the fire source located at Region I. Beyond that, the predictions are lower than the experiments, which is probably because of the absent consideration of bouncing process of the hot smoke from end walls. Therefore, an extra correction coefficient was proposed to the improved model in Region II with a consideration of bouncing process of the hot smoke from both end walls. As a result, it was found that the experimental results can be well predicted by this model in Region II.
Yongzheng Yao, Xudong Cheng, Shaogang Zhang, Kai Zhu, Heping Zhang, Long Shi (2016). Maximum smoke temperature beneath the ceiling in an enclosed channel with different fire locations. Applied Thermal Engineering, 111, pp. 30-38, DOI: 10.1016/j.applthermaleng.2016.08.161.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Applied Thermal Engineering
DOI
10.1016/j.applthermaleng.2016.08.161
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access