RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Mass Transfer System of a Large Number of Small Objects Based on Conjunction of Triboelectric Nanogenerators and Photo‐Responsive Interface

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2024

Mass Transfer System of a Large Number of Small Objects Based on Conjunction of Triboelectric Nanogenerators and Photo‐Responsive Interface

0 Datasets

0 Files

en
2024
Vol 34 (21)
Vol. 34
DOI: 10.1002/adfm.202314478

Get instant academic access to this publication’s datasets.

Create free accountHow it works
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Xuanyi Dong
Peng Yang
Zhaoqi Liu
+6 more

Abstract

Abstract Mass transfer technology for large quantities of tiny substances, such as electronic chips and drug particles, plays a crucial role in many industries. This study proposes a transferring system for large quantities of small objects based on the synergism of triboelectric nanogenerators (TENGs) and photo‐responsive dielectric materials. TENG device can provide an output voltage of over 8 kV within a rotation time of 40 ms and the titanium oxide phthalocyanine (TiOPc) photoconductive films are fabricated as the photo‐responsive interface, in order to match the output impedance of TENG. The transfer system enables a maximum adsorption load of 98 mg mm −2 , which is enough for handling all common electronics chips/wafers. Under the stimulation of laser light, the conductivity of the TiOPc interface can be increased by two orders of magnitude within 1 ms, which leads to the vanish of the surface potential on the laser spot and the release of patterned or pointed object. This photo‐responsive strategy can achieve both large quantity transfer of tiny objects and highly selective release of the element at designed position. This collaborative mechanism of electrostatic force and photoconductivity provides a different approach for realizing efficient and precise Mass transfer system of semiconductor and chip industry.

How to cite this publication

Xuanyi Dong, Peng Yang, Zhaoqi Liu, Xinglin Tao, Siyao Qin, Jun Hu, Xiangcheng Chu, Zhong Lin Wang, Xiangyu Chen (2024). Mass Transfer System of a Large Number of Small Objects Based on Conjunction of Triboelectric Nanogenerators and Photo‐Responsive Interface. , 34(21), DOI: https://doi.org/10.1002/adfm.202314478.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

9

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/adfm.202314478

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration