0 Datasets
0 Files
$0 Value
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessUniversity of Techology Sdyney
This paper presents a nature-inspired metaheuristic called Marine Predators Algorithm (MPA) and its application in engineering. The main inspiration of MPA is the widespread foraging strategy namely Lévy and Brownian movements in ocean predators along with optimal encounter rate policy in biological interaction between predator and prey. MPA follows the rules that naturally govern in optimal foraging strategy and encounters rate policy between predator and prey in marine ecosystems. This paper evaluates the MPA's performance on twenty-nine test functions, test suite of CEC-BC-2017, randomly generated landscape, three engineering benchmarks, and two real-world engineering design problems in the areas of ventilation and building energy performance. MPA is compared with three classes of existing optimization methods, including (1) GA and PSO as the most well-studied metaheuristics, (2) GSA, CS and SSA as almost recently developed algorithms and (3) CMA-ES, SHADE and LSHADE-cnEpSin as high performance optimizers and winners of IEEE CEC competition. Among all methods, MPA gained the second rank and demonstrated very competitive results compared to LSHADE-cnEpSin as the best performing method and one of the winners of CEC 2017 competition. The statistical post hoc analysis revealed that MPA can be nominated as a high-performance optimizer and is a significantly superior algorithm than GA, PSO, GSA, CS, SSA and CMA-ES while its performance is statistically similar to SHADE and LSHADE-cnEpSin. The source code is publicly available at: https://github.com/afshinfaramarzi/Marine-Predators-Algorithm, http://built-envi.com/portfolio/marine-predators-algorithm/, https://www.mathworks.com/matlabcentral/fileexchange/74578-marine-predators-algorithm-mpa, and http://www.alimirjalili.com/MPA.html.
Afshin Faramarzi, Mohammad Heidarinejad, Seyedali Mirjalili, Amir Gandomi (2020). Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Systems with Applications, 152, pp. 113377-113377, DOI: 10.1016/j.eswa.2020.113377.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Expert Systems with Applications
DOI
10.1016/j.eswa.2020.113377
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access