0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessLianas (woody vines) are abundant and diverse, particularly in tropical ecosystems. Lianas use trees for structural support to reach the forest canopy, often putting leaves above their host tree. Thus they are major parts of many forest canopies. Yet, relatively little is known about distributions of lianas in tropical forest canopies, because studying those canopies is challenging. This knowledge gap is urgent to address because lianas compete strongly with trees, reduce forest carbon uptake and are thought to be increasing, at least in the Neotropics. Lianas can be difficult to study using traditional field methods. Their pliable stems often twist and loop through the understorey, making it difficult to assess their structure and biomass, and the sizes and locations of their crowns. Furthermore, liana stems are commonly omitted from standard field surveys. Remote sensing of lianas can help overcome some of these obstacles and can provide critical insights into liana ecology, but to date there has been no systematic assessment of that contribution. We review progress in studying liana ecology using ground‐based, airborne and space‐borne remote sensing in four key areas: (i) spatial and temporal distributions, (ii) structure and biomass, (iii) responses to environmental conditions and (iv) diversity. This demonstrates the great potential of remote sensing for rapid advances in our knowledge and understanding of liana ecology. We then look ahead, to the possibilities offered by new and future advances. We specifically consider the data requirements, the role of technological advances and the types of methods and experimental designs that should be prioritised. Synthesis . The particular characteristics of the liana growth form make lianas difficult to study by ground‐based field methods. However, remote sensing is well suited to collecting data on lianas. Our review shows that remote sensing is an emerging tool for the study of lianas, and will continue to improve with recent developments in sensor and platform technology. It is surprising, therefore, how little liana ecology research has utilised remote sensing to date—this should rapidly change if urgent knowledge gaps are to be addressed. In short, liana ecology needs remote sensing.
Geertje van der Heijden, Ashley D. C. Proctor, Kim Calders, Chris J. Chandler, Richard Field, Giles Foody, Sruthi M. Krishna Moorthy, Stefan A. Schnitzer, Catherine E. Waite, Doreen S. Boyd (2022). Making (remote) sense of lianas. Journal of Ecology, 110(3), pp. 498-513, DOI: 10.1111/1365-2745.13844.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
Journal of Ecology
DOI
10.1111/1365-2745.13844
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access